README.md

    Build Status PyPI version License Join the chat at https://gitter.im/einsteinsci/betterbeginnings

    TFLearn: Deep learning library featuring a higher-level API for TensorFlow.

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it.

    TFLearn features include:

    • Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples.
    • Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, metrics…
    • Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn.
    • Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs and optimizers.
    • Easy and beautiful graph visualization, with details about weights, gradients, activations and more…
    • Effortless device placement for using multiple CPU/GPU.

    The high-level API currently supports most of recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks… In the future, TFLearn is also intended to stay up-to-date with latest deep learning techniques.

    Note: Latest TFLearn (v0.5) is only compatible with TensorFlow v2.0 and over.

    Overview

    # Classification
    tflearn.init_graph(num_cores=8, gpu_memory_fraction=0.5)
    
    net = tflearn.input_data(shape=[None, 784])
    net = tflearn.fully_connected(net, 64)
    net = tflearn.dropout(net, 0.5)
    net = tflearn.fully_connected(net, 10, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy')
    
    model = tflearn.DNN(net)
    model.fit(X, Y)
    
    # Sequence Generation
    net = tflearn.input_data(shape=[None, 100, 5000])
    net = tflearn.lstm(net, 64)
    net = tflearn.dropout(net, 0.5)
    net = tflearn.fully_connected(net, 5000, activation='softmax')
    net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy')
    
    model = tflearn.SequenceGenerator(net, dictionary=idx, seq_maxlen=100)
    model.fit(X, Y)
    model.generate(50, temperature=1.0)
    

    There are many more examples available here.

    Compatibility

    TFLearn is based on the original tensorflow v1 graph API. When using TFLearn, make sure to import tensorflow that way:

    import tflearn
    import tensorflow.compat.v1 as tf
    

    Installation

    TensorFlow Installation

    TFLearn requires Tensorflow (version 2.0+) to be installed.

    To install TensorFlow, simply run:

    pip install tensorflow
    

    or, with GPU-support:

    pip install tensorflow-gpu
    

    For more details see TensorFlow installation instructions

    TFLearn Installation

    To install TFLearn, the easiest way is to run

    For the bleeding edge version (recommended):

    pip install git+https://github.com/tflearn/tflearn.git
    

    For the latest stable version:

    pip install tflearn
    

    Otherwise, you can also install from source by running (from source folder):

    python setup.py install
    

    Getting Started

    See Getting Started with TFLearn to learn about TFLearn basic functionalities or start browsing TFLearn Tutorials.

    Examples

    There are many neural network implementation available, see Examples.

    Documentation

    http://tflearn.org/doc_index

    Model Visualization

    Graph

    Graph Visualization

    Loss & Accuracy (multiple runs)

    Loss Visualization

    Layers

    Layers Visualization

    Contributions

    This is the first release of TFLearn, if you find any bug, please report it in the GitHub issues section.

    Improvements and requests for new features are more than welcome! Do not hesitate to twist and tweak TFLearn, and send pull-requests.

    For more info: Contribute to TFLearn.

    License

    MIT License

    Описание

    Deep learning library featuring a higher-level API for TensorFlow.

    Конвейеры
    0 успешных
    0 с ошибкой