README.md

    Lightning



    The deep learning framework to pretrain, finetune and deploy AI models.

    NEW- Lightning 2.0 features a clean and stable API!!


    Lightning AIExamplesPyTorch LightningFabricDocsCommunityContribute

    PyPI - Python Version PyPI Status PyPI - Downloads Conda codecov

    Discord GitHub commit activity license

     

    Get started

    Install Lightning

    Simple installation from PyPI

    pip install lightning
    
    Other installation options

    Install with optional dependencies

    pip install lightning['extra']
    

    Conda

    conda install lightning -c conda-forge
    

    Install stable version

    Install future release from the source

    pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/release/stable.zip -U
    

    Install bleeding-edge

    Install nightly from the source (no guarantees)

    pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/master.zip -U
    

    or from testing PyPI

    pip install -iU https://test.pypi.org/simple/ pytorch-lightning
    

    Lightning has 2 core packages

    PyTorch Lightning: Train and deploy PyTorch at scale.
    Lightning Fabric: Expert control.

    Lightning gives you granular control over how much abstraction you want to add over PyTorch.

       

    PyTorch Lightning: Train and Deploy PyTorch at Scale

    PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch code to decouple the science from the engineering.

    PT to PL


    Examples

    Explore various types of training possible with PyTorch Lightning. Pretrain and finetune ANY kind of model to perform ANY task like classification, segmentation, summarization and more:

    Task Description Run
    Hello world Pretrain - Hello world example Open In Studio
    Image segmentation Finetune - ResNet-50 model to segment images Open In Studio
    Text classification Finetune - text classifier (BERT model) Open In Studio
    Audio generation Finetune - audio generator (transformer model) Open In Studio

    Hello simple model

    # main.py
    # ! pip install torchvision
    import torch, torch.nn as nn, torch.utils.data as data, torchvision as tv, torch.nn.functional as F
    import lightning as L
    
    # --------------------------------
    # Step 1: Define a LightningModule
    # --------------------------------
    # A LightningModule (nn.Module subclass) defines a full *system*
    # (ie: an LLM, diffusion model, autoencoder, or simple image classifier).
    
    
    class LitAutoEncoder(L.LightningModule):
        def __init__(self):
            super().__init__()
            self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
            self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))
    
        def forward(self, x):
            # in lightning, forward defines the prediction/inference actions
            embedding = self.encoder(x)
            return embedding
    
        def training_step(self, batch, batch_idx):
            # training_step defines the train loop. It is independent of forward
            x, _ = batch
            x = x.view(x.size(0), -1)
            z = self.encoder(x)
            x_hat = self.decoder(z)
            loss = F.mse_loss(x_hat, x)
            self.log("train_loss", loss)
            return loss
    
        def configure_optimizers(self):
            optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
            return optimizer
    
    
    # -------------------
    # Step 2: Define data
    # -------------------
    dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor())
    train, val = data.random_split(dataset, [55000, 5000])
    
    # -------------------
    # Step 3: Train
    # -------------------
    autoencoder = LitAutoEncoder()
    trainer = L.Trainer()
    trainer.fit(autoencoder, data.DataLoader(train), data.DataLoader(val))
    

    Run the model on your terminal

    pip install torchvision
    python main.py
    

    Advanced features

    Lightning has over 40+ advanced features designed for professional AI research at scale.

    Here are some examples:

    Train on 1000s of GPUs without code changes
    # 8 GPUs
    # no code changes needed
    trainer = Trainer(accelerator="gpu", devices=8)
    
    # 256 GPUs
    trainer = Trainer(accelerator="gpu", devices=8, num_nodes=32)
    
    Train on other accelerators like TPUs without code changes
    # no code changes needed
    trainer = Trainer(accelerator="tpu", devices=8)
    
    16-bit precision
    # no code changes needed
    trainer = Trainer(precision=16)
    
    Experiment managers
    from lightning import loggers
    
    # tensorboard
    trainer = Trainer(logger=TensorBoardLogger("logs/"))
    
    # weights and biases
    trainer = Trainer(logger=loggers.WandbLogger())
    
    # comet
    trainer = Trainer(logger=loggers.CometLogger())
    
    # mlflow
    trainer = Trainer(logger=loggers.MLFlowLogger())
    
    # neptune
    trainer = Trainer(logger=loggers.NeptuneLogger())
    
    # ... and dozens more
    
    Early Stopping
    es = EarlyStopping(monitor="val_loss")
    trainer = Trainer(callbacks=[es])
    
    Checkpointing
    checkpointing = ModelCheckpoint(monitor="val_loss")
    trainer = Trainer(callbacks=[checkpointing])
    
    Export to torchscript (JIT) (production use)
    # torchscript
    autoencoder = LitAutoEncoder()
    torch.jit.save(autoencoder.to_torchscript(), "model.pt")
    
    Export to ONNX (production use)
    # onnx
    with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
        autoencoder = LitAutoEncoder()
        input_sample = torch.randn((1, 64))
        autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
        os.path.isfile(tmpfile.name)
    

    Advantages over unstructured PyTorch

    • Models become hardware agnostic
    • Code is clear to read because engineering code is abstracted away
    • Easier to reproduce
    • Make fewer mistakes because lightning handles the tricky engineering
    • Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
    • Lightning has dozens of integrations with popular machine learning tools.
    • Tested rigorously with every new PR. We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
    • Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).


       

    Lightning Fabric: Expert control

    Run on any device at any scale with expert-level control over PyTorch training loop and scaling strategy. You can even write your own Trainer.

    Fabric is designed for the most complex models like foundation model scaling, LLMs, diffusion, transformers, reinforcement learning, active learning. Of any size.

    What to change Resulting Fabric Code (copy me!)
    + import lightning as L
      import torch; import torchvision as tv
    
     dataset = tv.datasets.CIFAR10("data", download=True,
                                   train=True,
                                   transform=tv.transforms.ToTensor())
    
    + fabric = L.Fabric()
    + fabric.launch()
    
      model = tv.models.resnet18()
      optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
    - device = "cuda" if torch.cuda.is_available() else "cpu"
    - model.to(device)
    + model, optimizer = fabric.setup(model, optimizer)
    
      dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
    + dataloader = fabric.setup_dataloaders(dataloader)
    
      model.train()
      num_epochs = 10
      for epoch in range(num_epochs):
          for batch in dataloader:
              inputs, labels = batch
    -         inputs, labels = inputs.to(device), labels.to(device)
              optimizer.zero_grad()
              outputs = model(inputs)
              loss = torch.nn.functional.cross_entropy(outputs, labels)
    -         loss.backward()
    +         fabric.backward(loss)
              optimizer.step()
              print(loss.data)
    

    import lightning as L
    import torch; import torchvision as tv
    
    dataset = tv.datasets.CIFAR10("data", download=True,
                                  train=True,
                                  transform=tv.transforms.ToTensor())
    
    fabric = L.Fabric()
    fabric.launch()
    
    model = tv.models.resnet18()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
    model, optimizer = fabric.setup(model, optimizer)
    
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
    dataloader = fabric.setup_dataloaders(dataloader)
    
    model.train()
    num_epochs = 10
    for epoch in range(num_epochs):
        for batch in dataloader:
            inputs, labels = batch
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = torch.nn.functional.cross_entropy(outputs, labels)
            fabric.backward(loss)
            optimizer.step()
            print(loss.data)
    

    Key features

    Easily switch from running on CPU to GPU (Apple Silicon, CUDA, …), TPU, multi-GPU or even multi-node training
    # Use your available hardware
    # no code changes needed
    fabric = Fabric()
    
    # Run on GPUs (CUDA or MPS)
    fabric = Fabric(accelerator="gpu")
    
    # 8 GPUs
    fabric = Fabric(accelerator="gpu", devices=8)
    
    # 256 GPUs, multi-node
    fabric = Fabric(accelerator="gpu", devices=8, num_nodes=32)
    
    # Run on TPUs
    fabric = Fabric(accelerator="tpu")
    
    Use state-of-the-art distributed training strategies (DDP, FSDP, DeepSpeed) and mixed precision out of the box
    # Use state-of-the-art distributed training techniques
    fabric = Fabric(strategy="ddp")
    fabric = Fabric(strategy="deepspeed")
    fabric = Fabric(strategy="fsdp")
    
    # Switch the precision
    fabric = Fabric(precision="16-mixed")
    fabric = Fabric(precision="64")
    
    All the device logic boilerplate is handled for you
      # no more of this!
    - model.to(device)
    - batch.to(device)
    
    Build your own custom Trainer using Fabric primitives for training checkpointing, logging, and more
    import lightning as L
    
    
    class MyCustomTrainer:
        def __init__(self, accelerator="auto", strategy="auto", devices="auto", precision="32-true"):
            self.fabric = L.Fabric(accelerator=accelerator, strategy=strategy, devices=devices, precision=precision)
    
        def fit(self, model, optimizer, dataloader, max_epochs):
            self.fabric.launch()
    
            model, optimizer = self.fabric.setup(model, optimizer)
            dataloader = self.fabric.setup_dataloaders(dataloader)
            model.train()
    
            for epoch in range(max_epochs):
                for batch in dataloader:
                    input, target = batch
                    optimizer.zero_grad()
                    output = model(input)
                    loss = loss_fn(output, target)
                    self.fabric.backward(loss)
                    optimizer.step()
    

    You can find a more extensive example in our examples



       

    Examples

    Self-supervised Learning
    Convolutional Architectures
    Reinforcement Learning
    GANs
    Classic ML

       

    Continuous Integration

    Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.

    *Codecov is > 90%+ but build delays may show less
    Current build statuses
    System / PyTorch ver. 1.13 2.0 2.1
    Linux py3.9 [GPUs] Build Status
    Linux py3.9 [TPUs] Test PyTorch - TPU
    Linux (multiple Python versions) Test PyTorch Test PyTorch Test PyTorch
    OSX (multiple Python versions) Test PyTorch Test PyTorch Test PyTorch
    Windows (multiple Python versions) Test PyTorch Test PyTorch Test PyTorch

       

    Community

    The lightning community is maintained by

    • 10+ core contributors who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
    • 800+ community contributors.

    Want to help us build Lightning and reduce boilerplate for thousands of researchers? Learn how to make your first contribution here

    Lightning is also part of the PyTorch ecosystem which requires projects to have solid testing, documentation and support.

    Asking for help

    If you have any questions please:

    1. Read the docs.
    2. Search through existing Discussions, or add a new question
    3. Join our discord.
    Описание

    The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

    Конвейеры
    0 успешных
    0 с ошибкой