README.md

    Machine Learning From Scratch

    About

    Python implementations of some of the fundamental Machine Learning models and algorithms from scratch.

    The purpose of this project is not to produce as optimized and computationally efficient algorithms as possible but rather to present the inner workings of them in a transparent and accessible way.

    Table of Contents

    Installation

    $ git clone https://github.com/eriklindernoren/ML-From-Scratch
    $ cd ML-From-Scratch
    $ python setup.py install
    

    Examples

    Polynomial Regression

    $ python mlfromscratch/examples/polynomial_regression.py
    

    Figure: Training progress of a regularized polynomial regression model fitting
    temperature data measured in Linköping, Sweden 2016.

    Classification With CNN

    $ python mlfromscratch/examples/convolutional_neural_network.py
    
    +---------+
    | ConvNet |
    +---------+
    Input Shape: (1, 8, 8)
    +----------------------+------------+--------------+
    | Layer Type           | Parameters | Output Shape |
    +----------------------+------------+--------------+
    | Conv2D               | 160        | (16, 8, 8)   |
    | Activation (ReLU)    | 0          | (16, 8, 8)   |
    | Dropout              | 0          | (16, 8, 8)   |
    | BatchNormalization   | 2048       | (16, 8, 8)   |
    | Conv2D               | 4640       | (32, 8, 8)   |
    | Activation (ReLU)    | 0          | (32, 8, 8)   |
    | Dropout              | 0          | (32, 8, 8)   |
    | BatchNormalization   | 4096       | (32, 8, 8)   |
    | Flatten              | 0          | (2048,)      |
    | Dense                | 524544     | (256,)       |
    | Activation (ReLU)    | 0          | (256,)       |
    | Dropout              | 0          | (256,)       |
    | BatchNormalization   | 512        | (256,)       |
    | Dense                | 2570       | (10,)        |
    | Activation (Softmax) | 0          | (10,)        |
    +----------------------+------------+--------------+
    Total Parameters: 538570
    
    Training: 100% [------------------------------------------------------------------------] Time: 0:01:55
    Accuracy: 0.987465181058
    

    Figure: Classification of the digit dataset using CNN.

    Density-Based Clustering

    $ python mlfromscratch/examples/dbscan.py
    

    Figure: Clustering of the moons dataset using DBSCAN.

    Generating Handwritten Digits

    $ python mlfromscratch/unsupervised_learning/generative_adversarial_network.py
    
    +-----------+
    | Generator |
    +-----------+
    Input Shape: (100,)
    +------------------------+------------+--------------+
    | Layer Type             | Parameters | Output Shape |
    +------------------------+------------+--------------+
    | Dense                  | 25856      | (256,)       |
    | Activation (LeakyReLU) | 0          | (256,)       |
    | BatchNormalization     | 512        | (256,)       |
    | Dense                  | 131584     | (512,)       |
    | Activation (LeakyReLU) | 0          | (512,)       |
    | BatchNormalization     | 1024       | (512,)       |
    | Dense                  | 525312     | (1024,)      |
    | Activation (LeakyReLU) | 0          | (1024,)      |
    | BatchNormalization     | 2048       | (1024,)      |
    | Dense                  | 803600     | (784,)       |
    | Activation (TanH)      | 0          | (784,)       |
    +------------------------+------------+--------------+
    Total Parameters: 1489936
    
    +---------------+
    | Discriminator |
    +---------------+
    Input Shape: (784,)
    +------------------------+------------+--------------+
    | Layer Type             | Parameters | Output Shape |
    +------------------------+------------+--------------+
    | Dense                  | 401920     | (512,)       |
    | Activation (LeakyReLU) | 0          | (512,)       |
    | Dropout                | 0          | (512,)       |
    | Dense                  | 131328     | (256,)       |
    | Activation (LeakyReLU) | 0          | (256,)       |
    | Dropout                | 0          | (256,)       |
    | Dense                  | 514        | (2,)         |
    | Activation (Softmax)   | 0          | (2,)         |
    +------------------------+------------+--------------+
    Total Parameters: 533762
    

    Figure: Training progress of a Generative Adversarial Network generating
    handwritten digits.

    Deep Reinforcement Learning

    $ python mlfromscratch/examples/deep_q_network.py
    
    +----------------+
    | Deep Q-Network |
    +----------------+
    Input Shape: (4,)
    +-------------------+------------+--------------+
    | Layer Type        | Parameters | Output Shape |
    +-------------------+------------+--------------+
    | Dense             | 320        | (64,)        |
    | Activation (ReLU) | 0          | (64,)        |
    | Dense             | 130        | (2,)         |
    +-------------------+------------+--------------+
    Total Parameters: 450
    

    Figure: Deep Q-Network solution to the CartPole-v1 environment in OpenAI gym.

    Image Reconstruction With RBM

    $ python mlfromscratch/examples/restricted_boltzmann_machine.py
    

    Figure: Shows how the network gets better during training at reconstructing
    the digit 2 in the MNIST dataset.

    Evolutionary Evolved Neural Network

    $ python mlfromscratch/examples/neuroevolution.py
    
    +---------------+
    | Model Summary |
    +---------------+
    Input Shape: (64,)
    +----------------------+------------+--------------+
    | Layer Type           | Parameters | Output Shape |
    +----------------------+------------+--------------+
    | Dense                | 1040       | (16,)        |
    | Activation (ReLU)    | 0          | (16,)        |
    | Dense                | 170        | (10,)        |
    | Activation (Softmax) | 0          | (10,)        |
    +----------------------+------------+--------------+
    Total Parameters: 1210
    
    Population Size: 100
    Generations: 3000
    Mutation Rate: 0.01
    
    [0 Best Individual - Fitness: 3.08301, Accuracy: 10.5%]
    [1 Best Individual - Fitness: 3.08746, Accuracy: 12.0%]
    ...
    [2999 Best Individual - Fitness: 94.08513, Accuracy: 98.5%]
    Test set accuracy: 96.7%
    

    Figure: Classification of the digit dataset by a neural network which has
    been evolutionary evolved.

    Genetic Algorithm

    $ python mlfromscratch/examples/genetic_algorithm.py
    
    +--------+
    |   GA   |
    +--------+
    Description: Implementation of a Genetic Algorithm which aims to produce
    the user specified target string. This implementation calculates each
    candidate's fitness based on the alphabetical distance between the candidate
    and the target. A candidate is selected as a parent with probabilities proportional
    to the candidate's fitness. Reproduction is implemented as a single-point
    crossover between pairs of parents. Mutation is done by randomly assigning
    new characters with uniform probability.
    
    Parameters
    ----------
    Target String: 'Genetic Algorithm'
    Population Size: 100
    Mutation Rate: 0.05
    
    [0 Closest Candidate: 'CJqlJguPlqzvpoJmb', Fitness: 0.00]
    [1 Closest Candidate: 'MCxZxdr nlfiwwGEk', Fitness: 0.01]
    [2 Closest Candidate: 'MCxZxdm nlfiwwGcx', Fitness: 0.01]
    [3 Closest Candidate: 'SmdsAklMHn kBIwKn', Fitness: 0.01]
    [4 Closest Candidate: '  lotneaJOasWfu Z', Fitness: 0.01]
    ...
    [292 Closest Candidate: 'GeneticaAlgorithm', Fitness: 1.00]
    [293 Closest Candidate: 'GeneticaAlgorithm', Fitness: 1.00]
    [294 Answer: 'Genetic Algorithm']
    

    Association Analysis

    $ python mlfromscratch/examples/apriori.py
    +-------------+
    |   Apriori   |
    +-------------+
    Minimum Support: 0.25
    Minimum Confidence: 0.8
    Transactions:
        [1, 2, 3, 4]
        [1, 2, 4]
        [1, 2]
        [2, 3, 4]
        [2, 3]
        [3, 4]
        [2, 4]
    Frequent Itemsets:
        [1, 2, 3, 4, [1, 2], [1, 4], [2, 3], [2, 4], [3, 4], [1, 2, 4], [2, 3, 4]]
    Rules:
        1 -> 2 (support: 0.43, confidence: 1.0)
        4 -> 2 (support: 0.57, confidence: 0.8)
        [1, 4] -> 2 (support: 0.29, confidence: 1.0)
    

    Implementations

    Supervised Learning

    Unsupervised Learning

    Reinforcement Learning

    Deep Learning

    Contact

    If there’s some implementation you would like to see here or if you’re just feeling social, feel free to email me or connect with me on LinkedIn.

    Описание

    Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

    Конвейеры
    0 успешных
    0 с ошибкой