README.md

    Generative Models

    Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine.

    Note:

    Generated samples will be stored in GAN/{gan_model}/out (or VAE/{vae_model}/out, etc) directory during training.

    What’s in it?

    Generative Adversarial Nets (GAN)

    1. Vanilla GAN
    2. Conditional GAN
    3. InfoGAN
    4. Wasserstein GAN
    5. Mode Regularized GAN
    6. Coupled GAN
    7. Auxiliary Classifier GAN
    8. Least Squares GAN
    9. Boundary Seeking GAN
    10. Energy Based GAN
    11. f-GAN
    12. Generative Adversarial Parallelization
    13. DiscoGAN
    14. Adversarial Feature Learning & Adversarially Learned Inference
    15. Boundary Equilibrium GAN
    16. Improved Training for Wasserstein GAN
    17. DualGAN
    18. MAGAN: Margin Adaptation for GAN
    19. Softmax GAN
    20. GibbsNet

    Variational Autoencoder (VAE)

    1. Vanilla VAE
    2. Conditional VAE
    3. Denoising VAE
    4. Adversarial Autoencoder
    5. Adversarial Variational Bayes

    Restricted Boltzmann Machine (RBM)

    1. Binary RBM with Contrastive Divergence
    2. Binary RBM with Persistent Contrastive Divergence

    Helmholtz Machine

    1. Binary Helmholtz Machine with Wake-Sleep Algorithm

    Dependencies

    1. Install miniconda http://conda.pydata.org/miniconda.html
    2. Do conda env create
    3. Enter the env source activate generative-models
    4. Install Tensorflow
    5. Install Pytorch
    Описание

    Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

    Конвейеры
    0 успешных
    0 с ошибкой