1 год назад
История
README.md
Dataset
The dataset is available online
mineral_images.zip
contains mineral imagesmineral_full.csv
contains all mineral samples descriptionsminerals_10.csv
,minerals_98.csv
andminerals_360.csv
contain mineral samples splitsminerals_size.csv
andsegm.tar
contain auxiliary information for some samples
Zero-Shot Raw Mineral Visual Recognition and Description
This repository provides code for mineral recognition experiments. We explore zero-shot problems on raw mineral samples. The dataset and the paper will be shared later.
Preprocessing
During data preprocessing, we obtain zero-shot detection to locate text tables, reference cubes and minerals themselves.
Run text detection
python scripts/preprocess/text_detection.py --input_csv=data/data.csv --image_path_col=image_path --output_csv=data/text_detection_res.csv --model_path=weights/craft_mlt_25k.pth --refiner_path=weights/craft_refiner_CTW1500.pth --cuda=0
Result will be saved in output_csv
Run mineral (object) detection
python scripts/preprocess/mineral_detection.py --input_csv=data/data.csv --image_path_col=image_path --output_csv=data/mineral_detection_res.csv --cache_dir=weights/ --cuda=0
Result will be saved in output_csv
Size estimator
Run predict size mineral
python scripts/predict/size_estimator.py --input_csv=data/data.csv --output_csv=data/predict_size.csv
Result will be saved in predict_size.csv
Run eval size mineral
python scripts/eval/eval_size_estimator.py --predict_csv=data/predict_size.csv --ground_true_csv=data/true_size.csv
Zero-shot classification
For zero-shot classification, we use CLIP.
Zero-shot segmentation
For zero-shot segmentation, we apply GradCAM techniques to a pre-trained classifier.
Описание
Зеркало https://github.com/ai-forever/mineral-recognition
Конвейеры
0 успешных
0 с ошибкой