README.md

Dataset

The dataset is available online

  • mineral_images.zip contains mineral images
  • mineral_full.csv contains all mineral samples descriptions
  • minerals_10.csv, minerals_98.csv and minerals_360.csv contain mineral samples splits
  • minerals_size.csv and segm.tar contain auxiliary information for some samples

Zero-Shot Raw Mineral Visual Recognition and Description

This repository provides code for mineral recognition experiments. We explore zero-shot problems on raw mineral samples. The dataset and the paper will be shared later.

Preprocessing

During data preprocessing, we obtain zero-shot detection to locate text tables, reference cubes and minerals themselves.

Run text detection

python scripts/preprocess/text_detection.py --input_csv=data/data.csv --image_path_col=image_path --output_csv=data/text_detection_res.csv --model_path=weights/craft_mlt_25k.pth --refiner_path=weights/craft_refiner_CTW1500.pth --cuda=0

Result will be saved in output_csv


Run mineral (object) detection

python scripts/preprocess/mineral_detection.py --input_csv=data/data.csv --image_path_col=image_path --output_csv=data/mineral_detection_res.csv --cache_dir=weights/ --cuda=0

Result will be saved in output_csv

Size estimator

Run predict size mineral

python scripts/predict/size_estimator.py --input_csv=data/data.csv  --output_csv=data/predict_size.csv

Result will be saved in predict_size.csv


Run eval size mineral

python scripts/eval/eval_size_estimator.py --predict_csv=data/predict_size.csv --ground_true_csv=data/true_size.csv

Zero-shot classification

For zero-shot classification, we use CLIP.

Zero-shot segmentation

For zero-shot segmentation, we apply GradCAM techniques to a pre-trained classifier.

Описание

Зеркало https://github.com/ai-forever/mineral-recognition

Конвейеры
0 успешных
0 с ошибкой