README.md

Anders

type exp =
  | EPre of Z.t | EKan of Z.t                                                          (* cosmos *)
  | EVar of ident | EHole                                                           (* variables *)
  | EPi of exp * (ident * exp) | ELam of exp * (ident * exp) | EApp of exp * exp           (* pi *)
  | ESig of exp * (ident * exp) | EPair of tag * exp * exp                              (* sigma *)
  | EFst of exp | ESnd of exp | EField of exp * string                    (* simga elims/records *)
  | EId of exp | ERef of exp | EJ of exp                                      (* strict equality *)
  | EPathP of exp | EPLam of exp | EAppFormula of exp * exp                     (* path equality *)
  | EI | EDir of dir | EAnd of exp * exp | EOr of exp * exp | ENeg of exp       (* CCHM interval *)
  | ETransp of exp * exp | EHComp of exp * exp * exp * exp                     (* Kan operations *)
  | EPartial of exp | EPartialP of exp * exp | ESystem of exp System.t      (* partial functions *)
  | ESub of exp * exp * exp | EInc of exp * exp | EOuc of exp                (* cubical subtypes *)
  | EGlue of exp | EGlueElem of exp * exp * exp | EUnglue of exp * exp * exp          (* glueing *)
  | EEmpty | EIndEmpty of exp                                                               (* 𝟎 *)
  | EUnit | EStar | EIndUnit of exp                                                         (* 𝟏 *)
  | EBool | EFalse | ETrue | EIndBool of exp                                                (* 𝟐 *)
  | EW of exp * (ident * exp) | ESup of exp * exp | EIndW of exp * exp * exp                (* W *)
  | EIm of exp | EInf of exp | EIndIm of exp * exp | EJoin of exp      (* Infinitesimal Modality *)

Anders is a HoTT proof assistant based on CCHM in flavour of Cubical Agda plus strict equality for 2LTT and ℑ modality for synthetic differential geometry.

Features

  • 𝟎, 𝟏, 𝟐, W.
  • Pretypes & strict equality.
  • Generalized Transport and Homogeneous Composition as primitive Kan operations.
  • Cubical subtypes.
  • Glue types.
  • Coequalizer.
  • ℑ modality.
  • UTF-8 support including universe levels (i.e. U₁₂₃).
  • Lean syntax for ΠΣW.
  • Poor man’s records as Σ with named accessors to telescope variables.
  • 1D syntax with top-level declarations.

Setup

$ make
$ dune exec anders help

Samples

You can find some examples in library/.

def inv′ (A : U) (a b : A) (p : Path A a b) : Path A b a :=
<i> hcomp A (∂ i) (λ (j : I), [(i = 0) → p @ j, (i = 1) → a]) a

def kan (A : U) (a b c d : A) (p : Path A a c) (q : Path A b d) (r : Path A a b) : Path A c d :=
<i> hcomp A (∂ i) (λ (j : I), [(i = 0) → p @ j, (i = 1) → q @ j]) (r @ i)

def comp (A : I → U) (r : I) (u : Π (i : I), Partial (A i) r) (u₀ : (A 0)[r ↦ u 0]) : A 1 :=
hcomp (A 1) r (λ (i : I), [(r = 1) → transp (<j> A (i ∨ j)) i (u i 1=1)]) (transp (<i> A i) 0 (ouc u₀))

def ghcomp (A : U) (r : I) (u : I → Partial A r) (u₀ : A[r ↦ u 0]) : A :=
hcomp A (∂ r) (λ (j : I), [(r = 1) → u j 1=1, (r = 0) → ouc u₀]) (ouc u₀)
$ anders check library/everything.anders

Related publications

MLTT

Type Checker is based on classical MLTT-80 with 0, 1, 2 and W-types.

CCHM

HTS

Modalities

Infinitesimal Modality was added for direct support of Synthetic Differential Geometry.

Acknowledgements

  • Univalent People

Authors

Описание

Anders: Cubical Type Checker

Конвейеры
0 успешных
0 с ошибкой